首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1442篇
  免费   69篇
  国内免费   2篇
  2023年   2篇
  2021年   19篇
  2020年   5篇
  2019年   5篇
  2018年   13篇
  2017年   11篇
  2016年   21篇
  2015年   57篇
  2014年   68篇
  2013年   82篇
  2012年   89篇
  2011年   115篇
  2010年   69篇
  2009年   68篇
  2008年   94篇
  2007年   106篇
  2006年   105篇
  2005年   95篇
  2004年   94篇
  2003年   81篇
  2002年   95篇
  2001年   12篇
  2000年   15篇
  1999年   18篇
  1998年   26篇
  1997年   15篇
  1996年   17篇
  1995年   20篇
  1994年   8篇
  1993年   11篇
  1992年   8篇
  1991年   10篇
  1990年   4篇
  1989年   10篇
  1988年   7篇
  1987年   4篇
  1986年   1篇
  1985年   4篇
  1984年   6篇
  1983年   3篇
  1982年   4篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
  1977年   2篇
  1976年   3篇
  1975年   1篇
  1970年   1篇
  1969年   1篇
排序方式: 共有1513条查询结果,搜索用时 22 毫秒
21.
22.
Although the pivotal implication of the host-encoded Prion protein, PrP, in the neuropathology of transmissible spongiform encephalopathy is known for decades, its biological role remains mostly elusive. Genetic inactivation is one way to assess such issue but, so far, PrP-knockout mice did not help much. However, recent reports involving (1) further studies of these mice during embryogenesis, (2) knockdown experiments in Zebrafish and (3) knockdown of Shadoo, a protein with PrP-like functional domains, in PrP-knockout mice, all suggested a role of the Prion protein family in early embryogenesis. This view is challenged by the recent report that PrP/Shadoo knockout mice are healthy and fertile. Although puzzling, these apparently contradictory data may on the contrary help at deciphering the Prion protein family role through focusing scientific attention outside the central nervous system and by helping the identification of other loci involved in the genetic robustness associated with PrP.  相似文献   
23.
Anthocyanin-rich peaches, because of their antioxidant properties and their strong attractiveness to consumers, are increasingly considered in French peach varietal innovation programs that integrate plant genomics and classical breeding. In this study, we describe a new blood-flesh trait identified in the ‘Wu Yue Xian’ peach accession from China. ‘Wu Yue Xian’ exhibits a fully red mesocarp during the later stages of fruit development, both with green midrib leaf and normal growth of the tree. This blood-flesh phenotype clearly differs from that determined by a single recessive locus (bf) in ‘Harrow Blood’, a clone showing blood-flesh in both immature and mature fruit associated with red midrib leaf and reduced tree height. We have then provided genetic evidence that blood-flesh phenotype of ‘Wu Yue Xian’ was controlled by a single dominant locus, designated DBF (Dominant Blood-Flesh), in four successive families derived from this accession. A genetic linkage map of the blood-flesh parent (‘D6090’) of the fourth population was constructed, including 102 SSRs spanning a total distance of 562.3 cM in eight linkage groups. Whereas the bf locus is located to linkage group 4, we mapped DBF to the top of linkage group 5, thus proving that DBF and bf loci are not alleles. Among 64 predicted genes in the DBF region (505 kbp), three genes of the dihydroflavonol-4-reductase family were identified as good candidates for the control of the DBF trait. Furthermore, SSR markers flanking DBF, such as AMPP157 and AMPPG178, supply a good basis to implement marker-assisted selection for this trait.  相似文献   
24.
The migratory shorebirds of the East Atlantic flyway land in huge numbers during a migratory stopover or wintering on the French Atlantic coast. The Brouage bare mudflat (Marennes-Oléron Bay, NE Atlantic) is one of the major stopover sites in France. The particular structure and function of a food web affects the efficiency of carbon transfer. The structure and functioning of the Brouage food web is crucial for the conservation of species landing within this area because it provides sufficient food, which allows shorebirds to reach the north of Europe where they nest. The aim of this study was to describe and understand which food web characteristics support nutritional needs of birds. Two food-web models were constructed, based on in situ measurements that were made in February 2008 (the presence of birds) and July 2008 (absence of birds). To complete the models, allometric relationships and additional data from the literature were used. The missing flow values of the food web models were estimated by Monte Carlo Markov Chain – Linear Inverse Modelling. The flow solutions obtained were used to calculate the ecological network analysis indices, which estimate the emergent properties of the functioning of a food-web.The total activities of the Brouage ecosystem in February and July are significantly different. The specialisation of the trophic links within the ecosystem does not appear to differ between the two models. In spite of a large export of carbon from the primary producer and detritus in winter, the higher recycling leads to a similar retention of carbon for the two seasons. It can be concluded that in February, the higher activity of the ecosystem coupled with a higher cycling and a mean internal organization, ensure the sufficient feeding of the migratory shorebirds.  相似文献   
25.
Amphipols are a class of amphipathic polymers designed to maintain membrane proteins in aqueous solutions in the absence of detergents. Denatured β-barrel membrane proteins, like outer membrane proteins OmpA from Escherichia coli and FomA from Fusobacterium nucleatum, can be folded by dilution of the denaturant urea in the presence of amphipol A8-35. Here, the folding kinetics and stability of OmpA in A8-35 have been investigated. Folding is well described by two parallel first-order processes, whose half-times, ~5 and ~70 min, respectively, are independent of A8-35 concentration. The faster process contributed ~55–64 % to OmpA folding. Folding into A8-35 was faster than into dioleoylphosphatidylcholine bilayers and complete at ratios as low as ~0.17 g/g A8-35/OmpA, corresponding to ~1–2 A8-35 molecules per OmpA. Activation energies were determined from the temperature dependence of folding kinetics, monitored both by electrophoresis, which reports on the formation of stable OmpA tertiary structure, and by fluorescence spectroscopy, which reflects changes in the environment of tryptophan side chains. The two methods yielded consistent estimates, namely ~5–9 kJ/mol for the fast process and ~29–37 kJ/mol for the slow one, which is lower than is observed for OmpA folding into dioleoylphosphatidylcholine bilayers. Folding and unfolding titrations with urea demonstrated that OmpA folding into A8-35 is reversible and that amphipol-refolded OmpA is thermodynamically stable at room temperature. Comparison of activation energies for folding and unfolding in A8-35 versus detergent indicates that stabilization of A8-35-trapped OmpA against denaturation by urea is a kinetic, not a thermodynamic phenomenon.  相似文献   
26.
Doping of ZnO nanoparticles (NPs) is being used to increase their commercialization in the optical and semiconductor fields. This paper addresses whether doping with Al alters how ZnO NPs at nonlethal levels modifies the metabolism of soil-borne pseudomonads which are beneficial in performing bioremediation or promoting plant growth. The differences in X-ray diffraction (XRD) patterns, observed between commercial ZnO and Al-doped ZnO NPs indicated the aluminum was present as Al NPs. Both particles aggregated in the bacterial growth medium and formed colloids of different surface charges. They had similar effects on bacterial metabolism: rapid, dose-dependent loss in light output indicative of temporary toxicity in a biosensor constructed in Pseudomonas putida KT2440; increased production of a fluorescent pyoverdine-type siderophore, and decreased levels of indole acetic acid and phenazines in Pseudomonas chlororaphis O6. Solubilization of Zn and Al from the NPs contributed to these responses to different extents. These findings indicate that Al-doping of the ZnO NPs did not reduce the ability of the NPs to alter bacterial metabolism in ways that could influence performance of the pseudomonads in their soil environment.  相似文献   
27.
We were able to demonstrate the presence of F 2,6-BP in Acetabularia in 7 out of 7 experiments. The amount varies between 4 and 38 pmole par mg protein. We were not able to evidence a circadian rhythm (CR) in its content. However, important fluctuations occur.(Fig. 1). This, of course excludes any precise conclusion about absolute amounts. Biologically active substances often exert an action modulated by circadian time. Thus, the effect of exogenous F 2,6-BP was assayed by fragmenting the long cell in F 2,6-BP-containing sea-water, and then follow growth and cap formation (we performed the experiment at different times during the 24 h cycle, in LD 12:12 conditions. Interestingly, the growth curves (obtained with 4 different concentrations) are statistically accelerated when the treatment had been performed at the beginning of the 24 h cycle (circadian time, CT, 0 is the transition time dark/light), less at CT 9.5, nul at CT 12 and again significant at CT 20. (Fig.IV). There is apparently no strictly defined light effect that could immediately modify the F-2,6-BP level, but there is presumably an important influence of CT-dependent physiological state of the alga. Again, it should be underlined that experimental biology should take time into account.  相似文献   
28.
BackgroundThe aetiology of the metabolic syndrome and the inter-relationship between risk factors for this syndrome are poorly understood. The purpose of this investigation was to determine the risk factors for metabolic syndrome and their interactions in a cohort of women with a high prevalence of metabolic syndrome.ResultsMetabolic syndrome was present in 49.6% of the study cohort. Logistic regression analysis demonstrated that adiponectin (odds ratio [95% CIs]: 0.84 [0.77, 0.92], p<0.0005) and abdominal subcutaneous fat (0.56 [0.39, 0.79], p = 0.001) reduced metabolic syndrome risk whilst insulin resistance (1.31 [1.16, 1.48], p<0.0005) and trunk fat-free soft-tissue mass (1.34 [1.10, 1.61], p = 0.002) increased risk. Within this group of risk factors, the relationship of adiponectin with metabolic syndrome risk, when analysed across adiponectin hexiles, was the least affected by adjustment for the other risk factors.ConclusionsAdiponectin has a significant protective role against metabolic syndrome and is independent of other risk factors. The protective and possible augmentive effects of abdominal subcutaneous fat and lean trunk mass, respectively on metabolic syndrome risk demonstrate the existence of novel interactions between body composition and cardiometabolic disease.  相似文献   
29.
The lipid composition of plasma membrane (PM) and the corresponding detergent-insoluble membrane (DIM) fraction were analyzed with a specific focus on highly polar sphingolipids, so-called glycosyl inositol phosphorylceramides (GIPCs). Using tobacco (Nicotiana tabacum) ‘Bright Yellow 2’ cell suspension and leaves, evidence is provided that GIPCs represent up to 40 mol % of the PM lipids. Comparative analysis of DIMs with the PM showed an enrichment of 2-hydroxylated very-long-chain fatty acid-containing GIPCs and polyglycosylated GIPCs in the DIMs. Purified antibodies raised against these GIPCs were further used for immunogold-electron microscopy strategy, revealing the distribution of polyglycosylated GIPCs in domains of 35 ± 7 nm in the plane of the PM. Biophysical studies also showed strong interactions between GIPCs and sterols and suggested a role for very-long-chain fatty acids in the interdigitation between the two PM-composing monolayers. The ins and outs of lipid asymmetry, raft formation, and interdigitation in plant membrane biology are finally discussed.Eukaryotic plasma membranes (PMs) are composed of three main classes of lipids, glycerolipids, sphingolipids, and sterols, which may account for up to 100,000 different molecular species (Yetukuri et al., 2008; Shevchenko and Simons, 2010). Overall, all glycerolipids share the same molecular moieties in plants, animals, and fungi. By contrast, sterols and sphingolipids are different and specific to each kingdom. For instance, the plant PM contains an important number of sterols, among which β-sitosterol, stigmasterol, and campesterol predominate (Furt et al., 2011). In addition to free sterols, phytosterols can be conjugated to form steryl glycosides (SG) and acyl steryl glycosides (ASG) that represent up to approximately 15% of the tobacco (Nicotiana tabacum) PM (Furt et al., 2010). As for sphingolipids, sphingomyelin, the major phosphosphingolipid in animals, which harbors a phosphocholine as a polar head, is not detected in plants. Glycosyl inositol phosphorylceramides (GIPCs) are the major class of sphingolipids in plants, but they are absent in animals (Sperling and Heinz, 2003; Pata et al., 2010). Sphingolipidomic approaches identified up to 200 plant sphingolipids (for review, see Pata et al., 2010; Cacas et al., 2013).Although GIPCs belong to one of the earliest classes of plant sphingolipids that were identified in the late 1950s (Carter et al., 1958), only a few GIPCs have been structurally characterized to date because of their high polarity and a limited solubility in typical lipid extraction solvents. For these reasons, they were systematically omitted from published plant PM lipid composition. GIPCs are formed by the addition of an inositol phosphate to the ceramide moiety, the inositol headgroup of which can then undergo several glycosylation steps. The dominant glycan structure, composed of a hexose-GlcA linked to the inositol, is called series A. Polar heads containing three to seven sugars, so-called series B to F, have been identified and appeared to be species specific (Buré et al., 2011; Cacas et al., 2013; Mortimer et al., 2013). The ceramide moiety of GIPCs consists of a long-chain base (LCB), mainly t18:0 (called phytosphingosine) or t18:1 compounds (for review, see Pata et al., 2010), to which is amidified a very-long-chain fatty acid (VLCFA), the latter of which is mostly 2-hydroxylated (hVLCFA) with an odd or even number of carbon atoms. In plants, little is known about the subcellular localization of GIPCs. It is assumed, however, that they would be highly represented in the PM (Worrall et al., 2003; Sperling et al., 2005), even if this remains to be experimentally proven. The main argument supporting such an assumption is the strong enrichment of trihydroxylated LCB (t18:n) in detergent-insoluble membrane (DIM) fractions (Borner et al., 2005; Lefebvre et al., 2007), LCB being known to be predominant in GIPC’s core structure as aforementioned.In addition to this chemical complexity, lipids are not evenly distributed within the PM. Sphingolipids and sterols can preferentially interact with each other and segregate to form microdomains dubbed the membrane raft (Simons and Toomre, 2000). The membrane raft hypothesis suggests that lipids play a regulatory role in mediating protein clustering within the bilayer by undergoing phase separation into liquid-disordered and liquid-ordered phases. The liquid-ordered phase, termed the membrane raft, was described as enriched in sterol and saturated sphingolipids and is characterized by tight lipid packing. Proteins, which have differential affinities for each phase, may become enriched in, or excluded from, the liquid-ordered phase domains to optimize the rate of protein-protein interactions and maximize signaling processes. In animals, rafts have been implicated in a huge range of cellular processes, such as hormone signaling, membrane trafficking in polarized epithelial cells, T cell activation, cell migration, and the life cycle of influenza and human immunodeficiency viruses (Simons and Ikonen, 1997; Simons and Gerl, 2010). In plants, evidence is increasing that rafts are also involved in signal transduction processes and membrane trafficking (for review, see Mongrand et al., 2010; Simon-Plas et al., 2011; Cacas et al., 2012a).Moreover, lipids are not evenly distributed between the two leaflets of the PM. Within the PM of eukaryotic cells, sphingolipids are primarily located in the outer monolayer, whereas unsaturated phospholipids are predominantly exposed on the cytosolic leaflet. This asymmetrical distribution has been well established in human red blood cells, in which the outer leaflet contains sphingomyelin, phosphatidylcholine, and a variety of glycolipids like gangliosides. By contrast, the cytoplasmic leaflet is composed mostly of phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, and their phosphorylated derivatives (Devaux and Morris, 2004). With regard to sphingolipids and glycerolipids, the asymmetry of the former is established during their biosynthesis and that of the latter requires ATPases such as the aminophospholipid translocase that transports lipids from the outer to the inner leaflet as well as multiple drug resistance proteins that transport phosphatidylcholine in the opposite direction (Devaux and Morris, 2004). This ubiquitous scheme encountered in animal cells could apply in plant cells as proposed (Tjellstrom et al., 2010). Indeed, the authors showed that there is a pronounced transverse lipid asymmetry in root at the PM. Phospholipids and galactolipids dominate the cytosolic leaflet, whereas the apoplastic leaflet is enriched in sphingolipids and sterols.From such a high diversity of the plant PM thus arises the question of the respective contribution of lipids to membrane suborganization. Our group recently tackled this aspect by characterizing the order level of liposomes prepared from various plant lipids and labeled with the environment-sensitive probe di-4-ANEPPDHQ (Grosjean et al., 2015). Fluorescence spectroscopy experiments showed that, among phytosterols, campesterol exhibits the strongest ability to order model membranes. In agreement with these data, spatial analysis of the membrane organization through multispectral confocal microscopy pointed to the strong ability of campesterol to promote liquid-ordered domain formation and organize their spatial distribution at the membrane surface. Conjugated sterols also exhibit a striking ability to order membranes. In addition, GIPCs enhance the sterol-induced ordering effect by emphasizing the formation and increasing the size of sterol-dependent ordered domains.The aim of this study was to reinvestigate the lipid composition and organization of the PM with a particular focus on GIPCs using tobacco leaves and cv Bright Yellow 2 (BY-2) cell cultures as models. Analyzing all membrane lipid classes at once, including sphingolipids, is challenging because they all display dramatically different chemical polarity, from very apolar (like free sterols) to highly polar (like polyglycosylated GIPCs) molecules. Most lipid extraction techniques published thus far use a chloroform/methanol mixture and phase partition to remove contaminants, resulting in the loss GIPCs, which remain in the aqueous phase, unextracted in the insoluble pellet, or at the interphase (Markham et al., 2006). In order to gain access to both glycerolipid and sphingolipid species at a glance, we developed a protocol whereby the esterifed or amidified fatty acids were hydrolyzed from the glycerol backbone (glycerolipids) or the LCB (sphingolipids) of membrane lipids, respectively. Fatty acids were then analyzed by gas chromatography-mass spectrometry (GC-MS) with appropriate internal standards for quantification. We further proposed that the use of methyl tert-butyl ether (MTBE) ensures the extraction of all classes of plant polar lipids. Our results indicate that GIPCs represent up to 40 mol % of total tobacco PM lipids. Interestingly, polyglycolyslated GIPCs are 5-fold enriched in DIMs of BY-2 cells when compared with the PM. Further investigation led us to develop a preparative purification procedure that allowed us to obtain enough material to raise antibodies against GIPCs. Using immunogold labeling on PM vesicles, it was found that polyglycosylated GIPCs cluster in membrane nanodomains, strengthening the idea that lateral nanosegregation of sphingolipids takes place at the PM in plants. Multispectral confocal microscopy was performed on vesicles prepared using GIPCs, phospholipids, and sterols and labeled with the environment-sensitive probe di-4-ANEPPDHQ. Our results show that, despite different fatty acid and polar head compositions, GIPCs extracted from tobacco leaves and BY-2 cells have a similar intrinsic propensity of enhancing vesicle global order together with sterols. Assuming that GIPCs are mostly present in the outer leaflet of the PM, interactions between sterols and sphingolipids were finally studied by the Langmuir monolayer technique, and the area of a single molecule of GIPC, or in interaction with phytosterols, was calculated. Using the calculation docking method, the energy of interaction between GIPCs and phytosterols was determined. A model was proposed in which GIPCs and phytosterols interact together to form liquid-ordered domains and in which the VLCFAs of GIPCs promote the interdigitation of the two membrane leaflets. The implications of domain formation and the asymmetrical distribution of lipids at the PM in plants are also discussed. Finally, we propose a model that reconsiders the intricate organization of the plant PM bilayer.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号